Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands.

Identifieur interne : 000106 ( Main/Exploration ); précédent : 000105; suivant : 000107

Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands.

Auteurs : Sofie Mossner [Allemagne] ; Hoang T. Phan [Allemagne] ; Saskia Triller [Allemagne] ; Jens M. Moll [Allemagne] ; Udo Conrad [Allemagne] ; Jürgen Scheller [Allemagne]

Source :

RBID : pubmed:32236103

Descripteurs français

English descriptors

Abstract

Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.

DOI: 10.1371/journal.pone.0230804
PubMed: 32236103
PubMed Central: PMC7112226


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands.</title>
<author>
<name sortKey="Mossner, Sofie" sort="Mossner, Sofie" uniqKey="Mossner S" first="Sofie" last="Mossner">Sofie Mossner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Phan, Hoang T" sort="Phan, Hoang T" uniqKey="Phan H" first="Hoang T" last="Phan">Hoang T. Phan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben</wicri:regionArea>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Triller, Saskia" sort="Triller, Saskia" uniqKey="Triller S" first="Saskia" last="Triller">Saskia Triller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben</wicri:regionArea>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moll, Jens M" sort="Moll, Jens M" uniqKey="Moll J" first="Jens M" last="Moll">Jens M. Moll</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conrad, Udo" sort="Conrad, Udo" uniqKey="Conrad U" first="Udo" last="Conrad">Udo Conrad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben</wicri:regionArea>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheller, Jurgen" sort="Scheller, Jurgen" uniqKey="Scheller J" first="Jürgen" last="Scheller">Jürgen Scheller</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32236103</idno>
<idno type="pmid">32236103</idno>
<idno type="doi">10.1371/journal.pone.0230804</idno>
<idno type="pmc">PMC7112226</idno>
<idno type="wicri:Area/Main/Corpus">000176</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000176</idno>
<idno type="wicri:Area/Main/Curation">000176</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000176</idno>
<idno type="wicri:Area/Main/Exploration">000176</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands.</title>
<author>
<name sortKey="Mossner, Sofie" sort="Mossner, Sofie" uniqKey="Mossner S" first="Sofie" last="Mossner">Sofie Mossner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Phan, Hoang T" sort="Phan, Hoang T" uniqKey="Phan H" first="Hoang T" last="Phan">Hoang T. Phan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben</wicri:regionArea>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Triller, Saskia" sort="Triller, Saskia" uniqKey="Triller S" first="Saskia" last="Triller">Saskia Triller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben</wicri:regionArea>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moll, Jens M" sort="Moll, Jens M" uniqKey="Moll J" first="Jens M" last="Moll">Jens M. Moll</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conrad, Udo" sort="Conrad, Udo" uniqKey="Conrad U" first="Udo" last="Conrad">Udo Conrad</name>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben</wicri:regionArea>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
<wicri:noRegion>Gatersleben</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheller, Jurgen" sort="Scheller, Jurgen" uniqKey="Scheller J" first="Jürgen" last="Scheller">Jürgen Scheller</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antigens, CD (metabolism)</term>
<term>CHO Cells (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Cricetinae (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Cytokine Receptor gp130 (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Interleukin-6 (metabolism)</term>
<term>Ligands (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Receptors, Artificial (chemical synthesis)</term>
<term>Receptors, Artificial (metabolism)</term>
<term>Receptors, Cytokine (metabolism)</term>
<term>Receptors, Interleukin-6 (metabolism)</term>
<term>STAT3 Transcription Factor (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antigènes CD (métabolisme)</term>
<term>Cellules CHO (MeSH)</term>
<term>Cricetinae (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Facteur de transcription STAT-3 (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Interleukine-6 (métabolisme)</term>
<term>Ligands (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Récepteur gp130 de cytokines (métabolisme)</term>
<term>Récepteurs artificiels (métabolisme)</term>
<term>Récepteurs artificiels (synthèse chimique)</term>
<term>Récepteurs aux cytokines (métabolisme)</term>
<term>Récepteurs à l'interleukine-6 (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Receptors, Artificial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antigens, CD</term>
<term>Cytokine Receptor gp130</term>
<term>Interleukin-6</term>
<term>Receptors, Artificial</term>
<term>Receptors, Cytokine</term>
<term>Receptors, Interleukin-6</term>
<term>STAT3 Transcription Factor</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes CD</term>
<term>Facteur de transcription STAT-3</term>
<term>Interleukine-6</term>
<term>Récepteur gp130 de cytokines</term>
<term>Récepteurs artificiels</term>
<term>Récepteurs aux cytokines</term>
<term>Récepteurs à l'interleukine-6</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Récepteurs artificiels</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>CHO Cells</term>
<term>Cell Line</term>
<term>Cricetinae</term>
<term>Cricetulus</term>
<term>Humans</term>
<term>Ligands</term>
<term>Models, Theoretical</term>
<term>Protein Multimerization</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules CHO</term>
<term>Cricetinae</term>
<term>Cricetulus</term>
<term>Humains</term>
<term>Ligands</term>
<term>Lignée cellulaire</term>
<term>Modèles théoriques</term>
<term>Multimérisation de protéines</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32236103</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands.</ArticleTitle>
<Pagination>
<MedlinePgn>e0230804</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0230804</ELocationID>
<Abstract>
<AbstractText>Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mossner</LastName>
<ForeName>Sofie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phan</LastName>
<ForeName>Hoang T</ForeName>
<Initials>HT</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Triller</LastName>
<ForeName>Saskia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moll</LastName>
<ForeName>Jens M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conrad</LastName>
<ForeName>Udo</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scheller</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-9932-1055</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015703">Antigens, CD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015850">Interleukin-6</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062165">Receptors, Artificial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018121">Receptors, Cytokine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019947">Receptors, Interleukin-6</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050796">STAT3 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494086">STAT3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>133483-10-0</RegistryNumber>
<NameOfSubstance UI="D050822">Cytokine Receptor gp130</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2020 Sep 3;15(9):e0238925</RefSource>
<PMID Version="1">32881955</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015703" MajorTopicYN="N">Antigens, CD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016466" MajorTopicYN="N">CHO Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003412" MajorTopicYN="N">Cricetulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050822" MajorTopicYN="N">Cytokine Receptor gp130</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015850" MajorTopicYN="N">Interleukin-6</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062165" MajorTopicYN="N">Receptors, Artificial</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018121" MajorTopicYN="N">Receptors, Cytokine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019947" MajorTopicYN="N">Receptors, Interleukin-6</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050796" MajorTopicYN="N">STAT3 Transcription Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32236103</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0230804</ArticleId>
<ArticleId IdType="pii">PONE-D-19-35000</ArticleId>
<ArticleId IdType="pmc">PMC7112226</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Jun;12(6):545-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15895091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2012 Nov-Dec;47(6):502-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Bioeng Biotechnol. 2018 Aug 20;6:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30177967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2010 Dec;19(12):2389-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20945358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Synth Syst Biotechnol. 2018 Sep 01;3(3):179-185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30345403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Dec;11(12):1253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2009 Aug;198(3):157-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 May 23;9(1):2034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29789554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2012 Feb 05;13(3):290-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Jun;11(5):582-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23398695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Feb;7(2):282-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 9;7(1):15172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29123149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Feb;15(2):142-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9035138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2012 Sep;42(9):2263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22949325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Jan;268(1):160-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Nov 26;262(5138):1401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8248779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2019 Mar;40(3):258-272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30738638</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Düsseldorf</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Düsseldorf</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Mossner, Sofie" sort="Mossner, Sofie" uniqKey="Mossner S" first="Sofie" last="Mossner">Sofie Mossner</name>
</region>
<name sortKey="Conrad, Udo" sort="Conrad, Udo" uniqKey="Conrad U" first="Udo" last="Conrad">Udo Conrad</name>
<name sortKey="Moll, Jens M" sort="Moll, Jens M" uniqKey="Moll J" first="Jens M" last="Moll">Jens M. Moll</name>
<name sortKey="Phan, Hoang T" sort="Phan, Hoang T" uniqKey="Phan H" first="Hoang T" last="Phan">Hoang T. Phan</name>
<name sortKey="Scheller, Jurgen" sort="Scheller, Jurgen" uniqKey="Scheller J" first="Jürgen" last="Scheller">Jürgen Scheller</name>
<name sortKey="Triller, Saskia" sort="Triller, Saskia" uniqKey="Triller S" first="Saskia" last="Triller">Saskia Triller</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000106 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000106 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32236103
   |texte=   Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32236103" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020